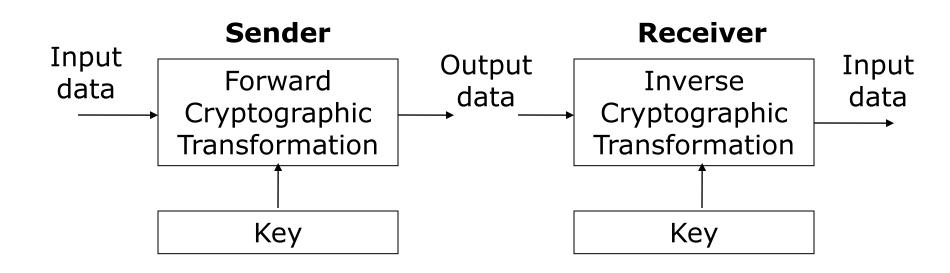
Digital Signature Schemes

Introduction

- Cryptography art & science of preventing users from unauthorized or illegal actions towards information, networking resources and services.
- *Cryptographic transformation* conversion of input data into output data using a *cryptographic key*.
- Cryptosystem forward and inverse cryptographic transformation pair

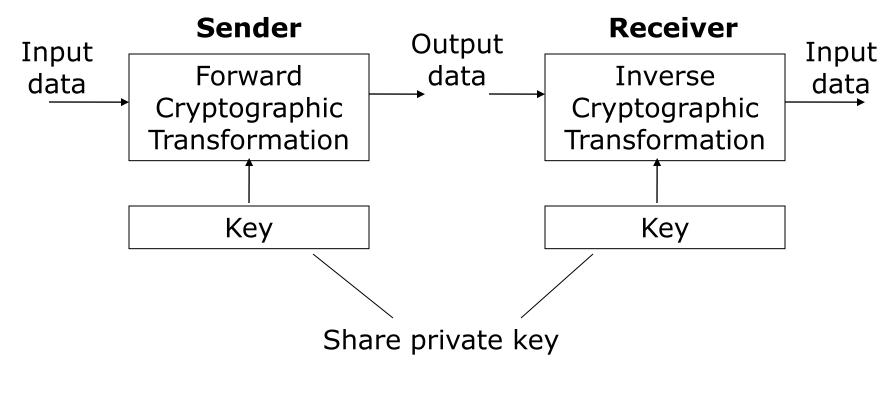
A Cryptosystem



Types of Cryptosystems

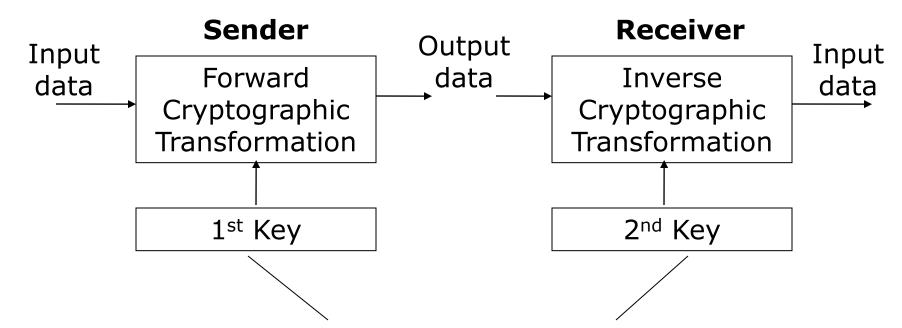
- Private key cryptosystem a private key is shared between the two communicating parties which must be kept secret between themselves.
- Public key cryptosystem the sender and receiver do not share the same key and one key can be public and the other can be private

Types of Cryptosystems



A Private Key Cryptosystem

Types of Cryptosystems



Do not share the same key information and one key may be public

A Public Key Cryptosystem

Digital Signatures

- Encryption, message authentication and digital signatures are all tools of modern cryptography.
- A signature is a technique for non-repudiation based on the public key cryptography.
- The creator of a message can attach a code, the signature, which guarantees the source and integrity of the message.

Properties of Signatures

- Similar to handwritten signatures, digital signatures must fulfill the following:
 - ✓ Must not be forgeable
 - ✓ Recipients must be able to verify them
 - ✓ Signers must not be able to repudiate them later
- In addition, digital signatures cannot be constant and must be a function of the entire document it signs

Types of Signatures

- *Direct digital signature* involves only the communicating parties
 - ✓ Assumed that receiver knows public key of sender.
 - ✓ Signature may be formed by (1) encrypting entire message with sender's private key or (2) encrypting hash code of message with sender's private key.
 - ✓ Further encryption of entire message + signature with receiver's public key or shared private key ensures confidentiality.

Types of Signatures

- Problems with direct signatures:
 - ✓ Validity of scheme depends on the security of the sender's private key ⇒ sender may later deny sending a certain message.
 - Private key may actually be stolen from X at time
 T, so timestamp may not help.

Types of Signatures

- Arbitrated digital signature involves a trusted third party or arbiter
 - ✓ Every signed message from sender, X, to receiver, Y, goes to an arbiter, A, first.
 - A subjects message + signature to number of tests to check origin & content
 - ✓ A dates the message and sends it to Y with indication that it has been verified to its satisfaction

Basic Mechanism of Signature Schemes

- A key generation algorithm to randomly select a public key pair.
- A signature algorithm that takes message + private key as input and generates a signature for the message as output
- A signature verification algorithm that takes signature + public key as input and generates information bit according to whether signature is consistent as output.

Digital Signature Standards

- NIST FIPS 186 Digital Signature Standard (DSS)
- El Gamal
- RSA Digital Signature
 - ISO 9796
 - ANSI X9.31
 - CCITT X.509

DSS

- Public-key technique.
- User applies the Secure Hash Algorithm (SHA) to the message to produce message digest.
- User's private key is applied to message digest using *DSA* to generate signature.

Global Public-Key Components p A prime number of L bits where L is a multiple of 64 and $512 \le L \le 1024$ q A 160-bit prime factor of p -1 g $= h^{(p-1)/q} \mod p$, where h is any integer with $1 < h < p$ -1, such that $(h^{(p-1)/q} \mod p) > 1$ User's Private Key x A random or pseudorandom integer with $0 < x < q$ User's Public Key		
qA 160-bit prime factor of p-1g= $h^{(p-1)/q} \mod p$, where h is any integer with $1 < h < p - 1$, such that $(h^{(p-1)/q} \mod p) > 1$ User's Private KeyxA random or pseudorandom integer with $0 < x < q$ User's Public Key		
$g = h^{(p-1)/q} \mod p, \text{ where h is any integer with } 1 < h < p-1, \text{ such that } (h^{(p-1)/q} \mod p) > 1$ $User's Private Key$ $x A \text{ random or pseudorandom integer with } 0 < x < q$ $User's Public Key$		
mod p)>1 User's Private Key x A random or pseudorandom integer with 0 <x<q< td=""> User's Public Key</x<q<>		
x A random or pseudorandom integer with 0 <x<q key<="" public="" th="" user's=""></x<q>		
User's Public Key		
$y = g^x \mod p$		
User's Per-Message Secret Number		
k A random or pseudorandom integer with $0 < k < q$		
Signing		
$r = (g^k \mod p) \mod q$ $s = [k^{-1} (H(M) = xr)] \mod q$ Signature = (r, s)		
Verifying		
$w = (s')^{-1} \mod q$ $u_1 = [H(M')w] \mod q \qquad u_2 = (r')w \mod q \qquad v = [(g^{u1}y^{u2}) \mod p] \mod q$ Test: $v = r'$		

The Digital Signature Algorithm (DSA)

DSS

- DSA
 - *M* = message to be signed
 - H(M) = hash of M using SHA
 - *M'*, *r'*, *s'* = received versions of *M*,

El Gamal Signature Scheme

- A variant of the DSA.
- Based on the assumption that computing discrete logarithms over a finite field with a large prime is difficult.
- Assumes that it is computationally infeasible for anyone other than signer to find a message *M* and an integer pair (*r*, *s*) such that *a^M* = *y^rr^s*(mod *p*).

El Gamal Signature Scheme

Parameters of El Gamal	
p	A large prime number such that $p-1$ has a large prime factor
X	The private key information of a user where $x < p$
а	A primitive element of the finite field for the prime <i>p</i>
У	$= a^x \mod p$
(р,а,у)	The public key information

El Gamal Signature Scheme

Step 1	Randomly choose an integer k such that $(k, p-1) = 1$, $1 < k < p-1$, and k has not been used to sign a previous message
Step 2	Calculate $r = a^k \pmod{p}$
Step 3	Find s such that $M = xr + ks \pmod{p-1}$
Step 4	Collect the pair (r, s) as the digital signature on the message M

Since, $M = xr + ks \pmod{(p-1)}$

 $\Rightarrow a^{M} = a^{(xr+ks)} = a^{xr}a^{ks} = y^{r}r^{s} \pmod{p}$

⇒ Given M and (r, s), the receiver or 3^{rd} party can verify the signature by checking whether $a^{M} = y^{r}r^{s} \pmod{p}$ holds or not.

RSA Digital Signature Scheme

- Based on the difficulty of factoring large numbers.
- Given *M*, RSA digital signature can be produced by encrypting either *M* itself or a digest of *M* using the private signature key *s*.
- Signature, S = w^s mod n, where w is message to be signed or message digest and n = pq (p and q are large primes).
- Verification: w = S^v mod n, where (v, n) is the public verification key.

Conclusions

- Digital signatures are an effective mechanism used for authenticity and non-repudiation of messages.
- Several signature schemes exist, but DSS is probably the most popular.
- Digital signatures may be expanded to be used as digital pseudonyms which would prevent authorities from figuring out a sender's identity, for example by cross-matching

Thank you!